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1. The wave equation 
Any one dimensional plane harmonic wave, which propagates along an x–axis, can be described 
by the following expression. 
 
(1.1)  )cos(),( 0  kxtAtxu  

 
u(x,t) is the displacement at x and time t. A is the amplitude, ω is the angular frequency, and k is 
the wave number. 0  kxt  is called the phase, and 0  is the initial phase.  

The equation (1.1) is based on two simple observations on waves:  
 

1. They propagate with a constant speed v. 
2. the shape of the wave is unchanged in its propagation 

 
The expression for a harmonic wave can be derived, if we assume that we have a harmonic 
oscillation, at x = 0:  

)cos(),0( 0  tAtu   

 
According to (1) and (2) we therefore state that the displacement at position x and time t is the 
same displacement that we had at x = 0, at an earlier time, namely the time it takes the wave to 
propagate from x = 0 to x. Written formally: 
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Introducing the wave number: 
v

k


  we arrive at (1.1). 

There are some relations between the various symbols: v (the speed), λ (The wavelength) , ω (the 
angular frequency), ν (the frequency) and T (the period) that can easily be verified. 
 

(1.2) 
k

v
T

vvk
T



  ,

2
,

2
 

 
If v is the speed of propagation, then any more general (not necessarily harmonic) wave 
phenomena, where )(),0( tftu  , it can be represented by a function, 
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Where f is the “shape” of the wave. 
 
All one dimensional wave phenomena satisfy the so called wave equation. 
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The symbol   denotes partial differentiation of a function of several variables.  
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Partial differentiation with respect to one variable is the same as ordinary differentiation, but 
where all the other variables are considered as constants. 
That both of the expressions (1.1) and (1.3) satisfy the wave equation is straightforward to verify 
by differentiation. 
On the other hand, if a physical phenomena, which can be described by a function, ),( txu  
satisfying (1.4) written on the form 
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Then it is a wave phenomena propagating with a speed v = 1/k. 
 
In the following, we shall consider various physical phenomena and show that they satisfy the 
wave equation (1.4), and in this manner, we shall determine their speed of propagation.  
 

2. The speed of propagation for waves on an elastic string 

 

 
We begin by considering a small piece of a string x, between x and x+x. 
The string is stretched along the x-axis, and the vibrating displacement is along the y–axis, so 

),(),( txytxu  . 

If we neglect gravity, the piece x of the string is affected only by the forces )()( xxFandxF  , 
both directed along the tangent to the string. 
The component of the forces in the y-direction, can be determined as Fsin  , where tan is the 

slope of the tangent. For small  , however sin  tan = 
x

u




 (the tangents slope).  

For the resulting force on x, in the y-direction, we thus find: 
 
(2.1)  )()( xFxxFFF yyy   

 
We have ignored the small differences in the tension F that there might be at the end points of the 
piece x of the string. Therefore the components of F in the x-direction cancel. So we have: 
 
(2.2)   
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According to Newton’ second law, the resulting force is equal to the mass of a body times its 
acceleration. If the mass per unit length is , then m = x. We thus find: 
 
  Force      = mass∙ acceleration  
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Comparing this expression to the wave equation (1.4), we see that, the speed of propagation v on 
the string must be:  
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Which was what, we set out to establish. 

3. The speed of propagation for longitudinal waves in solids 
The formula for the speed of propagation, for longitudinal waves in elastic solids is based on 
Hooke’s law. 
. 
If we have an elastic material with a cylindrical cross section A, length L, which is affected by a 
force F, and therefore is compressed/prolonged an amount x, Hooke’s law states: 
 

(3.1)  x
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E is a material constant, and is called Young’s module. (Sometimes written as Y) 
We then consider a small piece of such a material, which is supposed to comply with Hooke’s law. 
If a wave is propagating we have a dynamic state, and the forces F(x) and F(x+x), are not the 
same. See the figure below. 

 
The displacement from the position of stability, we shall as before denote as u(x,t).  
The displacement is now along the direction of propagation of the wave, that is, in the x direction.  
Otherwise the reasoning is the same as for the transversal waves on a string. 
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We calculate the resulting force on the segment x, and puts it equal to the mass times the 
acceleration of the piece of material that is situated between x and x+x. 
 
To establish the equation we apply Hooke’s law with L = x and  x = u(x+x,t) - u(x,t) 
The length of material in consideration is x, and the deformation of x is the difference between 
the displacements at x+x and x 
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If  is the density of the material, and m is the mass situated between x and x+x, then m = Ax.  
Newtons 2. law: Fres = ma therefore gives:: 
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If we compare (3.3) with the wave equation (1.4), we find the wanted expression for the speed of 
propagation of waves in elastic solids.  
 

(3.4)  
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4. The speed of sound in gasses 
A more direct derivation of the formula for the speed of sound is rather complicated. Here we shall 
adapt a derivation, using an analogy and comparison to result for the speed propagation in solids. 
 
First we rewrite Hooke’s law in differential form, since our aim is to obtain a link between a small 
change V of the volume, resulting from a small change of the pressure P. 
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(4.1)  
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 (Where E is ”Young’s module”) 

 
The minus sign in the expression comes about, because P and V have opposite signs. 
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From the last equation, we get an expression for the module E. (Which no longer can be identified 
with Young’s module). Inserting (4.1) into (3.3), we obtain an equation, from which we may 
determine the “speed of sound”.  
  
 
But first we shall then apply (4.1) to an ideal gas, which has the familiar equation of state. 
 
(4.2)  RTnPV M  
 
The relation PV = const between pressure P and volume V, holds good for isotherm changes. It is 
called Boyle-Mariotte’s law:  
 
For several decades however, this was a challenge for the physicists since, if you apply Boyle-
Mariotte’s law in (4.1), you get a result about 20% off for the speed of sound, when compared to 
measurements.   
 
But as Newton pointed out, the cause of the discrepancy with experiment was that when sound 
propagates in air the changes in pressure and volume are so fast that they are not isotherm, but 
adiabatic, that is, heat isolated. (No time for countervailing of temperature) 
 
Therefore we cannot use Boyle-Mariotte’s law, but must apply the corresponding, and slightly 
more complicated relation between pressure P and volume V, valid for adiabatic changes.  
 
To derive that relation we take as a starting point the first law of thermodynamic, written in 
differential form. The change of energy of a system is the added heat plus the work done on the 
system. 
(4.3)  dE  = dQ + dA  

 
For an ideal gas, the energy only depends on the temperature T, and is given by the expression:  
 
(4.4)  RdTndERTnNkTE MMkin    

 
N is the number of molecules, k is Boltzmann’s constant, nM is the mole number and R is the gas 
constant.   is a constant, which depends of the nature of the gas. It has the value 3/2 for one 
atomic gasses.  
 
"The piston work" is dA = -PdV , and adiabatic means that dQ = 0. From this follows: 
  
(4.5) 0 PdVRdTnPdVRdTndAdE MM   
 
Inserting (4.5) in the equation of state for ideal gasses in differential form  
 

d(PV)= nM RdT           PdV+VdP = nMRdT       γPdV+γVdP = γnMRdT 
we get 
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Integrating the last equation: 
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This constitutes the wanted adiabatic relation to be applied in (4.1) 
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Taking the differential of (4.7) it gives: 
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And finally: 
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Then we express the pressure P, with the help of the equation of state for gasses. 
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(4.9) and (4.10) are then used to insert in the formula (3.3)  for the speed of propagation in solids.   
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We have then arrived at the wanted expression for the speed of sound, which turns out to be in 
perfect accordance, with measurements. 
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 can be found in a table of physical constants. For atmospheric air it is   =1.4 
 
 


